If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-24t-16=0
a = 16; b = -24; c = -16;
Δ = b2-4ac
Δ = -242-4·16·(-16)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-40}{2*16}=\frac{-16}{32} =-1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+40}{2*16}=\frac{64}{32} =2 $
| X^4+4x^2-27=0 | | 2x/50=4/x | | 3a(a+2)+1=0 | | x/100=0.185 | | 14=x-7/8 | | -x+7=-2x+5 | | 3(x-12)-3x=112 | | 2x+7=-3x+52 | | 16-3x=3x+40 | | 48=30(3.6)+b | | 2=25(288)+b | | 3-2x+7=5x-4 | | (4-y)/3=6 | | 7/5+4/5x=53/20+7/4x+1/4 | | 48+6+3x=90 | | x+4.79=7.32 | | -0.4=(g/3)-0. | | −0.03x^2−0.6x+0.5=0 | | w-4.2=1.93 | | 6x^2+2x-54=2x | | 2x+10+5x+3=90 | | 7x+40=x3x+112 | | y+1.3=9.79 | | −0.03x2−0.6x+0.5=0-0.03x2-0.6x+0.5=0 | | 3x+4+38=0 | | 4b+5.2=10.8 | | 3(36)-y=5y | | 2=25x+0.2 | | 4x+8x+12=180 | | (2-x)3=12 | | 17-2v=15 | | 8x+4=12x+6 |